Python have 5 built-in data types one of which is **Numbers** which can be integer(10, 29, -10), Floats(19.29, -29.12) or even complex( 20 + 28i ). Although there are some common mathematical functions built into language itself. But there does exist a specific Module containing many functions to do Mathematical Operations on Numbers data types in Python – **Math Python Module**.

First question would be **How to import Math module in Python?** You can import python’s math module into code by using **import math** statement and to access functions inside it do math.function_name(parameter). Like **math.ceil(19.29)**.

Below are some tables explaining **what are functions inside Math module** with some examples for each.

Table of Contents

## Examples of using Math Module in Python Code

```
# import math module
import math
# Print out Mathematical Exponent, Pie constant
print(math.e)
print(math.pi)
# Above code prints out
2.718281828459045
3.141592653589793
```

## Numaric Functions Inside Python Math Module

**Table containing numerical functions inside Math Python Module with description and examples for each one.**

Function | Description |
---|---|

math.ceil(x) | Returns smallest integer grater than or equal to x. For example – math.ceil(19.29) will return 20 |

math.comb(x, y) | Returns number of ways to choose y items from x items without repetition and order. For example – math.comb(29, 2) will return 406 as there exist 406 ways to choose 2 items from a total of 29 items. |

math.copysign(x, y) | Returns a float having value of x but sign of y. For example – math.copysign(29, -9) will return -29.0 |

math.fabs(x) | Just returns absolute value of x. For example – math.fabs(-29) will return 29 |

math.factorial(x) | Returns factorial value of x. For example – math.factorial(3) will return 6 |

math.floor(x) | Returns largest integer less than or equal to x |

math.fmod(x, y) | Returns remainder left after division of x by y. For example – math.fmod(39, 2) will be 1 as 18*2+1 = 36 |

math.frexp(x) | Returns mantissa and exponent of x as a pair(a,b) where a is float and b is integer. For example – math.frexp(9) will return (0.5625, 4) |

math.gcd(x, y, …) | Returns gratest common division of all numbers passed to it. For example – math.gcd(10, 2) will return 2 |

math.isclose(x, y) | Checks whether passed numbers x, y are close to each other or not and returns true/false accordingly. For example – math.isclose(10, 2) will return false |

math.isfinite(x) | If x is not inifinity or NaN then returns true, false otherwise.For examplemath.isfinite(10) will return true math.isfinite(NaN) will return false |

math.isinf(x) | If x is postivie or negative infinity then it will return true, false otherwise. For example – math.isinf(∞) will return true |

math.isnan(x) | If x is NaN then it will return true, false otherwise. For example – math.isnan(NaN) will return true |

math.isqrt(x) | Return integer square root of nonnegative integer x. For example – math.isqrt(9) will return 3 |

math.lcm(x, y, ……) | Return least common mutiple of x, y, ……. For example – math.lcm(10, 2, 8) will return 40 |

math.ldexp(x,y) | Returns x * (2**y) For example – math.ldexp(100, 29) will return 53687091200.0 |

math.modf(x) | Returns fractional and integer parts of x, both results will be having sign of x and will be floats as well. For example – math.modf(19.02022) will return (0.02020999999999873, 19.0) |

math.nextafter(x, y) | Returns the next floating-point value after x towards y. For example – math.nextafter(10, 12) will return 10.0000000000000002 |

math.perm(x, y) | Returns number of ways to select y items from n items without repetition and with order. For example – math.perm(19, 2) will return 342 |

math.prod() | Returns remainder of two numbers. For example – math.prod(100, 3) will return 1.0 |

math.trunc(x) | Returns integer by truncationg x number. For example – math.trunc(100.272) will return 100 |

math.ulp(x) | Return value of least significant bit of float x. For example – math.ulp(1) will return 2.220446049250313e – 16 |

## Logarithmic Functions inside Python Math Module

**Table containing logarithmic functions inside Math Python Module with description and examples for each one.**

Function | Description |
---|---|

math.exp(x) | Return e raised to power x that is e^{x}(here e is mathematical exponent and its value is 2.718281….. ) For example – math.exp(3) will return 20.085536923187668 |

math.expm1(x) | Return e raised to power x and then minus 1 that is e^{x} – 1(here e is mathematical exponent and its value is 2.718281….. ) For example – math.exp(3) will return 19.085536923187668 |

math.log(x, base) | If base is provide then will return log(x)/log(base) value, otherwise will return only log(x) value. For example – math.log(10) will return 2.302585092994046 while math.log(10, 3) will return 2.095903274289385 |

math.log1p(x) | Returns natural logarithm of 1+x with base e.For examples – math.log1p(10) will return 2.3978952727983707 |

math.log2(x) | Return logarithm of x with base 2. For example – math.log2(100) will return 6.643856189774724 |

math.log10(x) | Return logarithm of x with base 10. For example – math.log10(100) will return 2 |

math.pow(x,y) | Return x raised to power y. For example – math.pow(4, 8) will return 65536.0 |

math.sqrt(x) | Return square root of x. For example – math.sqrt(10) will return 3.0 |

## Trigonometric Functions in Python Math Module

**Table containing logarithmic functions inside Math Python Module with description and examples for each one.**

**Stop 🖐🏻**

If your unaware of **What are trigonometric functions?** then see – Mathematical Trigonometric Functions first.

Python deals with Trigonometric functions like Sine, Cosine and others in Radians not in degrees. If in case your unaware of **What is Radian?** then see Radian first before moving on further in this article.

Function | Description |
---|---|

math.cos(x) | Returns cosine of x For example – math.cos(100) will return 0.862318872287684 |

math.sin(x) | Returns sine of x For example – math.sin(4) will return -0.7568024953079282 |

math.tan(x) | Returns tangent of x For example – math.tan(5) will return -3.380515006246585 |

math.dist(x,y) | Returns Euclidean distance between x and y points. For example – math.dist((10,2), (20,1)) will return 10.04987562112089 |

## Angular Conversion functions in Python Math Module

Table containing **Angular Conversion functions(For converting degrees to radians and vice-versa)** with description and examples for each one.

Function | Description |
---|---|

math.degress(x) | Converts angle x from degress to radians. For example – math.degrees(10) will return 572.9577951308232 |

math.radians(x) | Converts angle x from radians to degrees. For example – math.radians(29) will return 0.5061454830783556 |

## Mathematical Constants in Python Math Module

**Tables containing Mathematical Constants with description and examples for each one.**

Function | Description |
---|---|

math.pi | Returns mathematical constant π = 3.141592 |

math.e | Returns mathematical exponent value e = 2.718281 |

math.tau | Returns mathematical constant value τ = 6.283185 |

math.nan | Returns non a number NaN |

## Conclusion

**Python’s Data Type Number can be integer, float or complex**. But all of functions in Python’s Math Module can be applied to only **integers/floats** but can’t be applied to complex numbers as these have an **imaginary part** called **iota**.

That’s why Complex Numbers are totally different from others, so in order to do Mathematics with these numbers **Python’s core developers** have designed a separate module containing all functions which can take in **complex numbers** as parameter.

See this – cmath Python Module for Complex Numbers

Moreover if your interested in learning more about Python Programming Language, then you can see other articles written by me about Python here – Computer Science Hub Python.